Author's Personal Copy Matching 2d and 3d Articulated Shapes Using the Eccentricity Transform
نویسندگان
چکیده
This paper presents a novel method for 2D and 3D shape matching that is insensitive to articulation. It uses the eccentricity transform, which is based on the computation of geodesic distances. Geodesic distances computed over a 2D or 3D shape are articulation insensitive. The eccentricity transform considers the length of the longest geodesics. Histograms of the eccentricity transform characterize the compactness of a shape, in a way insensitive to rotation, scaling, and articulation. To characterize the structure of a shape, a histogram of the connected components of the level-sets of the transform is used. These two histograms make up a highly compact descriptor and the resulting method for shape matching is straightforward. Experimental results on established 2D and 3D benchmarks show results similar to more complex state of the art methods, especially when considering articulation. The connection between the geometrical modification of a shape and the corresponding impact on its histogram representation is explained. The influence of the number of bins in the two histograms and the respective importance of each histogram is studied in detail. 2011 Elsevier Inc. All rights reserved.
منابع مشابه
Matching 2D and 3D articulated shapes using the eccentricity transform
This paper presents a novel method for 2D and 3D shape matching that is insensitive to articulation. It uses the eccentricity transform, which is based on the computation of geodesic distances. Geodesic distances computed over a 2D or 3D shape are articulation insensitive. The eccentricity transform considers the length of the longest geodesics. Histograms of the eccentricity transform characte...
متن کاملMatching 2 D & 3 D Articulated Shapes using Eccentricity
Shape matching should be invariant to the typical intra-class deformations present in nature. The majority of shape descriptors are quite complex and not invariant to the deformation or articulation of object parts. Geodesic distances computed over a 2D or 3D shape are articulation insensitive. The eccentricity transform considers the length of the longest geodesics. It is robust with respect t...
متن کاملSkewed Coordinate System for Dense Point Correspondences Inside Articulated Shapes
This report considers using a non-rigid coordinate system to find corresponding points in different poses of the same articulated 2D shape. The shape-centered coordinate system is mapped on top of the eccentricity transform of the shape, which uses maximal geodesic distances and is bounded under articulation. The isolines of the eccentricity transform are used as one of the coordinates, the rad...
متن کاملRobust Correspondence and Retrieval of Articulated Shapes
We consider the problem of shape correspondence and retrieval. Although our focus is on articulated shapes, the methods developed are applicable to any shape specified as a contour, in the 2D case, or a surface mesh, in 3D. We propose separate methods for 2D and 3D shape correspondence and retrieval, but the basic idea for both is to characterize shapes using intrinsic measures, defined by geod...
متن کاملA Study on Human Gaze Detection Based on 3D Eye Model
Robust fake iris detection p. 10 A study on fast Iris restoration based on focus checking p. 19 A spatio-temporal metric for dynamic mesh comparison p. 29 Facetoface : an isometric model for facial animation p. 38 Matching two-dimensional articulated shapes using generalized multidimensional scaling p. 48 Further developments in geometrical algorithms for ear biometrics p. 58 Composition of com...
متن کامل